3.24.91 \(\int \frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{x^2} \, dx\)

Optimal. Leaf size=56 \[ \frac {4 a \left (a+b \sqrt {\frac {c}{x}}\right )^{3/2}}{3 b^2 c}-\frac {4 \left (a+b \sqrt {\frac {c}{x}}\right )^{5/2}}{5 b^2 c} \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 56, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {369, 266, 43} \begin {gather*} \frac {4 a \left (a+b \sqrt {\frac {c}{x}}\right )^{3/2}}{3 b^2 c}-\frac {4 \left (a+b \sqrt {\frac {c}{x}}\right )^{5/2}}{5 b^2 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sqrt[c/x]]/x^2,x]

[Out]

(4*a*(a + b*Sqrt[c/x])^(3/2))/(3*b^2*c) - (4*(a + b*Sqrt[c/x])^(5/2))/(5*b^2*c)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 369

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*((c_.)*(x_)^(q_))^(n_))^(p_.), x_Symbol] :> With[{k = Denominator[n]}, Su
bst[Int[(d*x)^m*(a + b*c^n*x^(n*q))^p, x], x^(1/k), (c*x^q)^(1/k)/(c^(1/k)*(x^(1/k))^(q - 1))]] /; FreeQ[{a, b
, c, d, m, p, q}, x] && FractionQ[n]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b \sqrt {\frac {c}{x}}}}{x^2} \, dx &=\operatorname {Subst}\left (\int \frac {\sqrt {a+\frac {b \sqrt {c}}{\sqrt {x}}}}{x^2} \, dx,\sqrt {x},\frac {\sqrt {\frac {c}{x}} x}{\sqrt {c}}\right )\\ &=-\operatorname {Subst}\left (2 \operatorname {Subst}\left (\int x \sqrt {a+b \sqrt {c} x} \, dx,x,\frac {1}{\sqrt {x}}\right ),\sqrt {x},\frac {\sqrt {\frac {c}{x}} x}{\sqrt {c}}\right )\\ &=-\operatorname {Subst}\left (2 \operatorname {Subst}\left (\int \left (-\frac {a \sqrt {a+b \sqrt {c} x}}{b \sqrt {c}}+\frac {\left (a+b \sqrt {c} x\right )^{3/2}}{b \sqrt {c}}\right ) \, dx,x,\frac {1}{\sqrt {x}}\right ),\sqrt {x},\frac {\sqrt {\frac {c}{x}} x}{\sqrt {c}}\right )\\ &=\frac {4 a \left (a+b \sqrt {\frac {c}{x}}\right )^{3/2}}{3 b^2 c}-\frac {4 \left (a+b \sqrt {\frac {c}{x}}\right )^{5/2}}{5 b^2 c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 43, normalized size = 0.77 \begin {gather*} \frac {4 \left (2 a-3 b \sqrt {\frac {c}{x}}\right ) \left (a+b \sqrt {\frac {c}{x}}\right )^{3/2}}{15 b^2 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sqrt[c/x]]/x^2,x]

[Out]

(4*(2*a - 3*b*Sqrt[c/x])*(a + b*Sqrt[c/x])^(3/2))/(15*b^2*c)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.03, size = 55, normalized size = 0.98 \begin {gather*} \frac {4 \sqrt {a+b \sqrt {\frac {c}{x}}} \left (2 a^2-a b \sqrt {\frac {c}{x}}-\frac {3 b^2 c}{x}\right )}{15 b^2 c} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[a + b*Sqrt[c/x]]/x^2,x]

[Out]

(4*Sqrt[a + b*Sqrt[c/x]]*(2*a^2 - a*b*Sqrt[c/x] - (3*b^2*c)/x))/(15*b^2*c)

________________________________________________________________________________________

fricas [A]  time = 1.29, size = 48, normalized size = 0.86 \begin {gather*} -\frac {4 \, {\left (a b x \sqrt {\frac {c}{x}} + 3 \, b^{2} c - 2 \, a^{2} x\right )} \sqrt {b \sqrt {\frac {c}{x}} + a}}{15 \, b^{2} c x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*(c/x)^(1/2))^(1/2)/x^2,x, algorithm="fricas")

[Out]

-4/15*(a*b*x*sqrt(c/x) + 3*b^2*c - 2*a^2*x)*sqrt(b*sqrt(c/x) + a)/(b^2*c*x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*(c/x)^(1/2))^(1/2)/x^2,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.02, size = 70, normalized size = 1.25 \begin {gather*} -\frac {4 \sqrt {a +\sqrt {\frac {c}{x}}\, b}\, \left (a x +\sqrt {\frac {c}{x}}\, b x \right )^{\frac {3}{2}} \left (-2 a +3 \sqrt {\frac {c}{x}}\, b \right )}{15 \sqrt {\left (a +\sqrt {\frac {c}{x}}\, b \right ) x}\, b^{2} c x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+(c/x)^(1/2)*b)^(1/2)/x^2,x)

[Out]

-4/15*(a+(c/x)^(1/2)*b)^(1/2)*(a*x+(c/x)^(1/2)*b*x)^(3/2)/c/x*(3*(c/x)^(1/2)*b-2*a)/((a+(c/x)^(1/2)*b)*x)^(1/2
)/b^2

________________________________________________________________________________________

maxima [A]  time = 0.54, size = 43, normalized size = 0.77 \begin {gather*} -\frac {4 \, {\left (\frac {3 \, {\left (b \sqrt {\frac {c}{x}} + a\right )}^{\frac {5}{2}}}{b^{2}} - \frac {5 \, {\left (b \sqrt {\frac {c}{x}} + a\right )}^{\frac {3}{2}} a}{b^{2}}\right )}}{15 \, c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*(c/x)^(1/2))^(1/2)/x^2,x, algorithm="maxima")

[Out]

-4/15*(3*(b*sqrt(c/x) + a)^(5/2)/b^2 - 5*(b*sqrt(c/x) + a)^(3/2)*a/b^2)/c

________________________________________________________________________________________

mupad [B]  time = 1.39, size = 52, normalized size = 0.93 \begin {gather*} -\frac {\sqrt {a+b\,\sqrt {\frac {c}{x}}}\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{2},2;\ 3;\ -\frac {b\,\sqrt {\frac {c}{x}}}{a}\right )}{x\,\sqrt {\frac {b\,\sqrt {\frac {c}{x}}}{a}+1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*(c/x)^(1/2))^(1/2)/x^2,x)

[Out]

-((a + b*(c/x)^(1/2))^(1/2)*hypergeom([-1/2, 2], 3, -(b*(c/x)^(1/2))/a))/(x*((b*(c/x)^(1/2))/a + 1)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a + b \sqrt {\frac {c}{x}}}}{x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*(c/x)**(1/2))**(1/2)/x**2,x)

[Out]

Integral(sqrt(a + b*sqrt(c/x))/x**2, x)

________________________________________________________________________________________